Syntheses of New 1,3,4-Oxadiazolo[3,2-d]-1,3,4-dithiazines and 1,3,4-Oxadiazolo[3,2-d]thiadiazines with Fungicidal Action

Lal Dhar S. Yadav,[†] Rajani K. Tripathi, Rajesh Dwivedi, and Harendra Singh[•] Department of Chemistry, University of Gorakhpur, Gorakhpur 273009, India

2-(Chloromethyl)-1,3,4-oxadiazoles (Ia,b) on condensation with ammonium N-aryldithiocarbamates (IIa-c) afford (1,3,4-oxadiazol-2-yl)methyl N-aryldithiocarbamates (IIIa-f). The dithiocarbamates IIIa-f undergo oxidative cyclization with SOCl₂ and I₂ to yield 5-aryl-1,3,4-oxadiazolo[3,2-d]-1,3,4-thiadiazine-6(5H)-thiones (IVa-f) and 6-(arylimino)-1,3,4-oxadiazolo[3,2-d]-1,3,4-dithiazines (Va-f), respectively. The compounds III-V compared with Dithane M-45 for their in vitro antifungal action against Helminthosporium oryzae and Cephalosporium saccharii showed similar, though lesser, activity.

INTRODUCTION

Dithiocarbamates, maneb, zineb, ziram, and vapam, are among the most used fungicides for controlling plant diseases. Similarly, the 1,3,4-oxadiazole nucleus is associated with a broad spectrum of useful pesticidal activities, for example, bactericidal (Sinnur et al., 1986; Zayed et al., 1986) fungicidal (Dutta et al., 1986; Singh et al., 1987), herbicidal (Dahle and Doyle, 1974; Mitsubishi Chemical Industries, 1985), and insecticidal (Okada, 1970). Perusal of the above papers, in view of achieving new antifungal compounds of high potency prompted us to synthesize IIIa-f to Va-f incorporating the biolabile 1,3,4-oxadiazole and dithiocarbamate moieties. The investigation appeared quite interesting as the 1,3,4-oxadiazolodithia(thiadia)zines IV and V reported herein are hitherto unknown bicyclic nitrogen-bridged heterocycles.

The reaction sequence leading to the formation of IV and V is outlined in the Scheme I. Acid hydrazides were cyclized with chloroacetyl chloride (Vakula and Srinivasan, 1973) to give 2-(chloromethyl)-1,3,4-oxadiazoles (Ia,b), which condensed with ammonium N-aryldithiocarbamates (IIa-c) to furnish IIIa-f. Oxidative cyclization of IIIa-f with thionyl chloride and iodine yielded the isomeric compounds IVa-f and Va-f, respectively.

The structural assignments of the synthesized compounds were based on elemental analyses and IR, ¹H NMR, and mass spectra (Table I). The elemental analyses (C, H, and N) of IIIa-f to Va-f were quite compatible with their assigned structures. The isomeric compounds IV and V clearly differ in their IR spectra; V exhibited a strong band around 1690 cm⁻¹ (exocyclic C==N), whereas compounds IV were devoid of this band. Of the tested compounds IIIa-f to Va-f, the compounds IVe, Vb, and Ve displayed antifungal activity of the order of Dithane M-45 [a commercial fungicide, a mixed manganous and zinc salt of N,N'-ethylenebis(dithiocarbamic acid)] at 1000 ppm concentration against Helminthosporium oryzae and Cephalosporium saccharii.

EXPERIMENTAL PROCEDURES

Melting points were determined by open glass capillary method and are uncorrected. IR spectra, in KBr, were recorded on a Perkin-Elmer 157 infrared spectrophotometer (ν_{max} , cm⁻¹). ¹H NMR spectra were recorded on a Varian EM-360L (60 MHz) NMR spectrometer in DMSO-d₆ using TMS as internal reference; chemical shifts are expressed in δ . Mass spectra were recorded on a JEOL JMS-D 300 instrument.

 $\begin{array}{l} Ia, R^{2}-2\cdot ClC_{6}H_{4}, Ib; R^{2}-2\cdot ClC_{6}H_{2}, OCH_{2}, II a; R^{2}-C_{6}H_{5}, II b; R^{2}-4\cdot ClC_{6}H_{4}, II a; \\ R^{2}-4\cdot CH_{3}C_{6}H_{4}, III a-c; IIIa-c; IIIa-c; IIIa-c; R^{2}-C_{6}H_{5}, 4-ClC_{6}H_{4}, 4-CH_{3}C_{6}H_{4}; \\ R^{2}-2\cdot ClC_{6}H_{4}; IIId-f; IIId-f; IIId-f; IIId-f R=C_{6}H_{5}, 4-ClC_{6}H_{4}; 4-CH_{3}C_{6}H_{4}; \\ R^{2}-2\cdot ClC_{6}H_{4}, OCH_{2}. \end{array}$

2-(Chloromethyl)-5-aryl[and (aryloxy)methyl]-1,3,4-oxadiazoles (Ia,b). These compounds were prepared by heating a mixture of chloroacetyl chloride (0.1 mol) and the appropriate acid hydrazide (0.1 mol) around the melting point of the hydrazide (Vakula and Srinivasan, 1973) until the evolution of HCl had ceased (6 h). The reaction mixture was cooled and the residue was washed with water and recrystallized from ethanol.

Ia: yield 63 %; mp 210–11 °C; IR 1625 cm⁻¹ (ν C=N); ¹H NMR δ 4.80 (s, 2 H, CH₂), 6.94–7.86 (m, 4 H, aromatic H). Anal. Calcd. for C₉H₆Cl₂N₂O: C, 47.16; H, 2.62; N, 12.23. Found: C, 47.24; H, 2.53; N, 12.18.

Ib: yield 60%; mp 179-80 °C; IR 1620 cm⁻¹ (ν C=N); ¹H NMR δ 4.82 (s, 2 H, CH₂), 6.96-7.90 (m, 4 H, aromatic H) 5.22 [s, 2 H, (OCH₂)]. Anal. Calcd. for C₁₀H₈Cl₂N₂O₂: C, 46.33; H, 3.09; N, 10.81. Found: C, 46.28; H, 3.14; N, 10.74.

[5-Aryl[and (aryloxy)methyl]-1,3,4-oxadiazol-2-yl]methyl N-Aryldithiocarbamates (IIIa-f). A mixture of I (0.1 mol), ammonium N-aryldithiocarbamate (II, 0.1 mol), and anhydrous sodium acetate (0.1 mol) was refluxed in 250-300 mL of absolute ethanol for 2 h. The reaction mixture was cooled and poured into water. The desired product thus precipitated was washed with water and recrystallized from ethanol to give yellowish needles. The yields, the melting points, and the spectral data for the products IIIa-f obtained are listed in Table I.

2-Aryl[and (aryloxy)methyl]-5-aryl-1,3,4-oxadiazolo[3,2d]-1,3,4-thiadiazine-6(5H)-thiones (IVa-f). Solutions of IIIa-f

^{*} Author to whom correspondence should be addressed. † Present address: Department of Chemistry, University of Allahabad, Allahabad 211002, India.

Table I. Yield, Melting Points, and Spectral Data of Compounds IIIa-f to Va-f

			IR (KBr), cm ⁻¹				
			νC=S*				
compd	yield, %	mp, °C	vC=N (cyclic)	vC=N (exocyclic)	¹ H NMR (DMSO- d_6), δ	$MS/M^+, m/z$	
IIIa	64	204-5	1630	1090*	9.42 (1 H, br s, NH)	361, 363	
					7.00–7.60 (9 H, m, Ar H)		
					4.88 (2 H, s, SCH ₂)		
IIIb	59	165 6 6	1635	1100*	9.40 (1 H, br s, NH)	395, 397, 399	
					6.96-7.64 (8 H, m, Ar H)		
			1000	1100+	$4.86(2 \text{ H, s, SC}H_2)$	005 000	
llic	68	175	1630	1100*	9.30 (1 Π , Dr 8, N Π) 6.86 7.80 (8 Π m, A- Π)	310, 311	
					$(0.00-7.00)$ (0 Π , Π , Ar Π)		
					$2.36(3 H + CH_{o})$		
ша	67	110	1630	1090*	9.42(1 H, br s. NH)		
1114	0.	110	2000		7.02-7.64 (9 H. m. Ar H)	391, 393	
					5.24 (2 H, s, OCH ₂)	,	
IIIe	61	142-43	1635	1090*	9.38 (1 H, br s, NH)	425, 427, 429	
					7.04–7.60 (8 H, m, Ar H)		
					$4.86 (2 H, s, SCH_2)$		
					$5.26 (2 H, s, OCH_2)$		
IIIf	65	198-99	1635	1090*	9.36 (1 H, br s, NH)	405, 407	
					6.92-7.84 (8 H, m, Ar H)		
					$4.88(2 H, s, SCH_2)$		
					$5.24 (2 H, s, OCH_2)$		
IVe	55	191-99	1695	1090#	7.02-8.00 (10 H m Ar H and SCH)	950 961	
IVA	00 59	101-02	1620	1100*	7.02-8.00 (10 H, m, Ar H and SCH) 7.00-8.02 (9 H m Ar H and SCH)	303,301	
IVC	57	103	1625	1000*	7.00-7.98(9 H m Ar H and SCH)	373 375	
1.00	01	100	1020	1000	$2.26 (3 H. s. CH_{2})$	010,010	
IVd	59	205-6	1630	1080*	7.04-8.02 (10 H. m. Ar H and SCH)	389.391	
					5.28 (2 H, s, OCH ₂)		
IVe	54	89-9 0	1630	1090*	7.00-8.02 (9 H, m, Ar H and SCH)	423, 425, 427	
					$5.26 (2 H, s, OCH_2)$		
IVf	60	123-24	1625	1080*	7.06–8.04 (9 H, m, Ar H and SCH)	403, 405	
					$5.26 (2 H, s, OCH_2)$		
			1010	1000	2.24 (3 H, s, CH_3)	050 001	
Va	65	224-25	1640	1690	6.96-7.72 (10 H, m, Ar H and SCH)	359,361	
VD	56	179-81	1640	1685	6.92 - 7.74 (9 H, m, Ar H and SCH)	393, 390, 397	
vc	96	130-130	1030	1000	$9.90 (2 \mathbf{U} \circ \mathbf{CU})$	213, 210	
Vd	63	990-91	1640	1690	6.90-7.80(10 H m Ar H and SCH)	389 391	
vu	00	220 21	1040	1000	5.22 (2 H. s. OCH ₂)	000,001	
Ve	66	101-2	1635	1680	6.88-7.76 (9 H, m, Ar H and SCH)	423, 425, 427	
					5.20 (2 H, s, OCH ₂)		
Vf	70	264-65	1640	1690	6.92–7.72 (9 H, m, Ar H and SCH)	403, 405	
					5.20 (2 H, s, OCH ₂)	•	
					2.24 (3 H, s, CH ₃)		

(0.02 mol) and thionyl chloride (0.025 mol) were refluxed in pyridine (50 mL) for 8 h. Pyridine was distilled under reduced pressure, and the residues were washed with water and recrystallized from ethanol. The yields, the melting points, and the spectral data of compounds IVa-f thus prepared are recorded in Table I.

2-Aryl[and (aryloxy)methyl]-6-(arylimino)-1,3,4-oxadiazolo[3,2-d]-1,3,4-dithiazines (Va-f). The compounds IIIa-f (0.02 mol) were treated with a solution of iodine in ethanolwater (80:20 v/v) until decolorization of iodine was no longer observed. On addition of NH₄OH to the reaction mixture, the desired products precipitated. The products were recrystallized from ethanol as light brown needles. The yields, the melting points, and the spectral data for the products Va-f obtained are given in Table I.

2-(2-Chlorophenyl)-5-(4-methylphenyl)-1,3,4-oxadiazolo-[3,2-d]-1,3,4-thiadiazin-6(5H)-one (VIc). The compound IVc (0.005 mol) and HgO (0.0055 mol) were refluxed in ethanol for 18h (Silberg and Cosma, 1959). The precipitated HgS was filtered off, and the filtrate was concentrated and cooled to give VIc, which was recrystallized from ethanol.

VIc: yield 56%; mp 110–11 °C; IR 1670 (ν C=O) and 1630 cm⁻¹ (ν C=N); ¹H NMR δ 7.02–7.94 (m, 9 H, aromatic H and SCH), 2.24 (s, 3 H, CH₃). Anal. Calcd for C₁₇H₁₂ClN₃O₂S: C, 57.06; H, 3.36; N, 11.75. Found: C, 57.42; H, 3.28; N, 11.68.

Antifungal Screening. The antifungal activity of compounds IIIa-f to Va-f was evaluated against H. oryzae and C. saccharii. The pure culture of test fungi, the pathogenicity of which was already verified, were obtained from the Division of Mycology and Plant Pathology, Indian Agricultural Research Institute, Delhi. Agar (bacterological grade) supplied by Sarrabhi M. Chemicals was used as such. Compounds IIIa-f to Va-f were screened by agar plate technique (Horsfall, 1945) at 1000, 100, and 10 ppm concentrations using Czapek's agar medium (Raper and Thom, 1968).

Suspensions of different concentrations of each compound viz. 10 000, 1000, and 100 ppm, were prepared in an acetone-water (20:80 v/v) mixture. One milliliter of each concentration of the test compounds was added separately to presterilized Petri dishes containing 9 mL of sterilized Czapek's agar medium to maintain the final concentration of 1000, 100, and 10 ppm. The compounds were thoroughly mixed with the medium by rotating the plates on table top, thus swirling the contents. A fungal disk of 5-mm diameter, cut out with the help of sterilized cork borer from the periphery of 1-week-old culture of the test fungus already planted on the Czapek's medium, was inoculated in the center of each plate in an inverted position to bring the mycelia in direct contact with the medium. Petri dishes containing 9 mL of Czapek's medium and 1 mL of acetone water (20:80 v/v) mixture served as controls. The number of replicate assays in each case was three, whereas six replications of controls were provided. The plates were incubated at 28 °C (±1 °C) for 96 h. No remarkable morphological change was observed in developing fungi. After 96 h, four diameters of the fungal colony, intersecting one another at about 45°, were measured with the help of a millimeter scale and percent inhibition of mycelial growth was calculated by

% inhibition = $[(C - T) \times 100]/C$

where C is the average diameter of the fungal colony (millimeter)

Table II. Antifungal Screening Results of Compounds IIIa-f to Va-f

	av % inhibition after 96 h against							
	H. oryzae			C. saccharii				
compd	1000 ppm	100 ppm	10 ppm	1000 ppm	100 ppm	10 ppm		
IIIa	42		14	43		12		
IIIb	47	29	15	46	29	15		
IIIc	44	28	14	44	28	14		
IIId	58	36	16	61	42	19		
IIIe	65	38	20	64	44	22		
IIIf	63	37	18	61	34	18		
IVa	68	49	24	67	46	22		
IVb	94	68	47	92	66	47		
IVc	77	53	29	77	55	25		
IVd	74	50	26	72	47	24		
IVe	98	70	51	99	69	51		
IVf	83	61	48	84	60	41		
Va	71	53	32	71	53	29		
Vb	96	69	50	94	68	48		
Vc	84	62	32	77	58	32		
Vd	78	55	37	76	57	38		
Ve	100	72	54	99	72	53		
Vf	87	68	46	85	65	45		
Dithane M-45ª	100	85	72	100	83	70		

^a Commercial fungicide.

in control plates and T the average diameter of the fungal colony (millimeter) in treated plates.

Dithane M-45, a standard commercial fungicide, was also tested under similar conditions for comparing the results. The antifungal activity displayed by the tested compounds IIIa-f to Va-f is summarized in Table II.

RESULTS AND DISCUSSION

Chemoselectivity in the oxidative cyclization of III to IV and V may be rationalized by the "hard and soft acids and bases, HSAB, principle". The cyclization of III to IV with SOCl₂ involves the attack of hard N of the dithiocarbamate chain and that of the oxadiazole ring (N-3) on the hard S of SOCl₂, followed by the extrusion of SO (Barluenga et al., 1979). On the other hand, I₂, a soft Lewis acid, is attacked by the soft thionic S of the dithiocarbamate function, followed by the cyclization to V with elimination of HI. Further, the representative compound IVc was converted into their 6-one analogues VIc on treatment with HgO (see Experimental Procedures). This conversion, involving desulfurization of the exocyclic sulfur, provides chemical evidence for the assigned structure of IV.

From the antifungal screening data it is obvious that compounds IVa-f and Va-f inhibited more than 65% of growth of both the test fungi at 1000 ppm concentration and hence are antifungal. The most active of these compounds, viz. IVe, Vb, and Ve, exhibited antifungal action almost equivalent but not better than that of Dithane M-45 at 1000 ppm concentration and inhibited 48-54% of growth of both the fungal species even at 10 ppm. In spite of the fact that dithiocarbamates IIIa-f have a preformed open-chain skeleton of the 1,3,4-thiadiazine and 1.3.4-dithiazine rings, these were less toxic than their cyclized products IVa-f and Va-f, where the chain is closed. resulting in more planar and compact systems. This is in conformity with earlier observations that compact size and planarity of a molecule often enhances its pesticidal activities (Fischer and Summers, 1976; Chatt et al., 1956; Rothwell and Wain, 1964). The order of antifungal activity was found to be V > IV > III. It was noted that the introduction of a chloro group in the aryl moiety tended to augment the antifungal activity significantly over the introduction of a methyl group. Presumably, this is due to greater lipophilic character of the chloro group relative

to that of methyl, which favors the permeation of the compound through lipoid layers of the fungal cell wall. The antifungal activity varied marginally with the fungal species.

Although some of the screened compounds, IVe, Vb, and Ve, were highly toxic to H. oryzae and C. saccharii at higher concentration (1000 ppm), the overall results are not so encouraging as one would expect from the combined performance of two biolabile dithiocarbamate and oxadiazole nuclei. This might be attributed to the partial saturation in the oxadiazolodithia(thiadia)zine ring systems resulting in the loss of planarity.

ACKNOWLEDGMENT

We thank Prof. S. Giri, Head, Department of Chemistry, University of Gorakhpur, for providing laboratory facilities and RSIC Lucknow for recording the spectra and elemental analyses. R.K.T. sincerely thanks the UGC, New Delhi, for the award of a Junior Research Fellowship.

LITERATURE CITED

- Barluenga, J.; Lopez-Ortiz, F.; Gotor, V. Formation of a Novel N-N Bond Through SO Extrusion. Regioselective Synthesis of 1,2,6-Thiadiazine S-Oxides and Pyrazoles. J. Chem. Soc., Chem. Commun. 1979, 811.
- Chatt, J.; Duncanson, L. A.; Venanzi, L. M. Electronic Structure of Dithiocarbamates and Xanthates. *Nature (London)* **1956**, *177*, 133–144.
- Dahle, N. A.; Doyle, W. C., Jr. Combating Unwanted Vegetation with 2-aryl-5-substituted-1,3,4-oxadiazoles. U.S. Patent 3,808,223; Chem. Abstr. 1974, 81, 13524w.
- Dutta, M. M.; Goswami, B. N.; Kataky, J. C. S. Studies on Biologically active Heterocycles. Part I. Synthesis and Antifungal Activity of Some New Aroyl Hydrazones and 2,5substituted-1,3,4-oxadiazoles. J. Heterocycl. Chem. 1986, 23 (3), 793-795.
- Fischer, H.; Summers, L. A. One Electron Transfer Properties and Herbicidal Activity of Diquaternary Salts of 2,4-Di-(4pyridyl)-1,3,5-triazines. *Tetrahedron* 1976, 32, 615-618.
- Horsfall, J. G. Quantitative Bioassay of Fungicides in the Laboratory. Bot. Rev. 1945, 11, 357-397.
- Mistubishi Chemical Industries Co. Ltd. Japan. Herbicidal 3-(substituted phenyl)-5-substituted-1,3,4-oxadiazolin-2-ones. Jpn. Kokai Tokkyo Koho JP 60, 109, 578 [85,109,578]; Chem. Abstr. 1985, 103, 178266z.
- Okada, Y. 1,3,4-oxadiazoles. Takeda Chemical Industries Ltd. Japan; 70 17, 189; Chem. Abstr. 1970, 73, 77252y.
- Raper, K. B.; Thom, C. A Manual of the Penicillia; Hafner Publishing: New York, 1968; pp 64-65.
- Rothwell, K.; Wain, R. L. Plant Growth Regulating Substance XVII. S-Esters of Dithiocarbamates derived from Amino acids. Ann. Appl. Biol. 1963, 51, 161–167; Chem. Abstr. 1964, 60, 1041c.
- Silberg, Al.; Cosma, N. On Some Addition to Senevols. II. The Addition of Some Aryl Hydrazide To Phenyl Senevol and the Behaviour of the Product thus Obtained. Acad. Repub. Pop. Rom., Fil. Cluj, Stud. Cercet. Chim. 1959, 10, 151-162; Chem. Abstr. 1960, 54, 8795e.
- Singh, H.; Misra, A. R.; Yadav, L. D. S. Synthesis & Fungitoxicity of New 1,3,4-oxadiazolo[3,2-a]-s-triazine-5,7-diones and their Thione Analogues. *Indian J. Chem.* 1987, 26B, 1000– 1002.
- Sinnur, K. H.; Siddappa, S.; Hiremath, S. R.; Purohit, M. G.; Synthesis of Substituted-2-(1',3',4'-oxadiazol-2'-yl) indoles. Indian J. Chem. 1986, 25B, 716-720.
- Vakula, T. R.; Srinivasan, V. R. 1,3,4-oxa(thia)diazoles VIII. Synthesis and reactivity of 5-Aryl-2-chloromethyl-1,3,4-oxadiazoles. Indian J. Chem. 1973, 11, 732-734.
- Zayed, A. H. A.; Zayed, S.; Harb, A. F. A.; Manhi, F. M. Synthesis of New Quinazoline Derivatives as Anti-microbial Agents. Pol. J. Pharmacol. Pharm. 1986, 38 (1), 99–106; Chem. Abstr. 1987, 106, 156362n.

Received for review January 8, 1991. Revised manuscript received June 4, 1991. Accepted June 20, 1991.